Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.journals.elsevier.com/electrochimica-acta

Spray-deposited cobalt-doped RuO₂ electrodes for high-performance supercapacitors

Chandrashekhar R, Abhijit A. Yadav

Thin Film Physics Laboratory, Department of Physics, Electronics and Photonics, Rajarshi Shahu Mahavidyalaya (Autonomous), Latur, Maharashtra 413512, India

ARTICLE INFO

ABSTRACT

Keywords: Spray pyrolysis Ruthenium oxide Aqueous/organic solvent mixture Supercapacitor Cyclic voltammetry RuO₂ is widely used as the material in supercapacitors; however, there is little information on the doping RuO₂ with cobalt using an aqueous/organic solvent mixture in the spray pyrolysis technique. The phase purity and rutile crystal structure of cobalt-doped RuO₂ were validated using X-ray diffraction. Optical studies indicated that the bandgap can be decreased from 1.80 eV to 1.70 eV by doping the RuO₂ with cobalt. In this study, the performance of electrochemical supercapacitors and their morphology are both significantly altered by cobalt doping. 1.00 mol% cobalt-doped RuO₂ displays a high specific capacitance (1072 F g⁻¹ at a 5 mV s⁻¹ scan rate) compared with that of undoped RuO₂ (893 F g⁻¹ at a 5 mV s⁻¹ scan rate). 1.00 mol% cobalt-doped RuO₂ has the highest specific energy (96.02 W h kg⁻¹) at a specific power value of 1.702 kW kg⁻¹. The specific capacitance was improved (1158 F g⁻¹ at 0.5 A g⁻¹) in a 0.5 M H₂SO₄ electrolyte. After 1000 charge–discharge cycles, 94% of the capacity of a 1.00 mol% cobalt-doped RuO₂ electrode was preserved, indicating outstanding long-term cyclic stability. This study endorses the view that 1.00 mol% cobalt-doped RuO₂ is a promising material for super-capacitor applications.

1. Introduction

Currently, more than 80% of the energy used in the world comes from fossil fuels. Because this fossil fuel use is contributing to the greenhouse effect and fossil fuel reserves are getting exhausted, the production of electrical energy from sustainable and renewable sources, including the sun, winds, and tides, is increasing [1,2]. Because of the erratic nature of the sun and winds, energy-conversion and energy-storage devices, including batteries/fuel cells and supercapacitors, are receiving a lot of interest. It is well known that supercapacitors work in conjunction with other energy storage/generating devices such as batteries and fuel cells [3]. Supercapacitors are used in computers, wearable electronics, video cameras, mobile phones, transmitters, backup power supplies, hybrid electric vehicles, etc [4-8]. Supercapacitors are classified on the basis of the charge-storage process as electric double-layer capacitors, pseudocapacitors and hybrid supercapacitors. Conducting polymers, carbon and metal oxides/hydroxides are commonly utilised supercapacitor electrode materials. The specific capacitance of metal oxides is relatively high [5,6,9].

The morphology, electrical conductivity, and crystal structure of an electrode material govern a supercapacitor's electrochemical

performance. Numerous metal oxides, including ruthenium oxide (RuO₂), Hausmannite (Mn₃O₄), manganese dioxide (MnO₂), nickel oxide (NiO), nickel hydroxide (Ni(OH)₂), cobalt oxide (Co₃O₄), cobalt hydroxide (Co(OH)₂), iron oxides (Fe₃O₄ (magnetite) and Fe₂O₃ (hematite)), titanium oxide (TiO₂), tin oxide (SnO₂), vanadium oxide (V₂O₅), nickel cobalt oxide (NiCo₂O₄), nickel ferrite (NiFe₂O₄), cobalt ferrite (CoFe₂O₄), and copper oxide (CuO), have been comprehensively studied for use as supercapacitor electrodes [9–13]. RuO₂/hydrous RuO₂ has been extensively studied because it has exceptional qualities, including a high electrical conductivity of 10^5 (Ω cm)⁻¹ and a theoretical capacitance of 1300–2200 F g⁻¹ [14].

The ionic and electrical conductivities, specific capacitance and cycle stability of metal oxides can be enhanced by doping them with different elements [15]. Hasan and coworkers [16] explored the electrochemical characteristics of sol–gel synthesized Ni-doped ZnMn_2O_4 . They found that the material had a specific capacitance of 161.3 F g⁻¹. Kishor and colleagues [17] electrodeposited Cu-doped RuO₂ electrocatalysts and studied their selectivity and specific chlorine evolution reaction activity. Joshi and Sutrave [18] prepared Mn-doped RuO₂ electrodes using the sol–gel process. The Mn doping had significant effects on the pore size of the electrodes. The specific capacitance was highest (328 F g⁻¹) with 1at

https://doi.org/10.1016/j.electacta.2022.141521

Received 28 August 2022; Received in revised form 16 October 2022; Accepted 9 November 2022 Available online 12 November 2022 0013-4686/© 2022 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. *E-mail address:* aay_physics@yahoo.co.in (A.A. Yadav).

% Mn doping. Macounová et al. [19] prepared Co-, Mg-, Ni- and Zn-doped RuO_2 electrodes using a spray-freezing/freeze-drying method. Petrykin and coworkers [20] prepared Co-doped RuO_2 electrocatalysts using the co-precipitation method. It has been reported that the chlorine and oxygen evolution reaction activities are substantially improved by cobalt doping. Su et al. [21] described the preparation of ultra-small nanocrystals of Cu-doped RuO_2 . An improvement in oxygen evolution reaction activity with Cu doping was noted.

A survey of the literature indicates that most doped RuO₂ materials are utilized as electrocatalysts for hydrogen evolution and oxygen evolution reactions [22,23]. Very few reports are available on spray-deposited doped RuO₂ prepared using aqueous/organic solvent mixtures. Such mixtures were used to spray-deposit cobalt-doped RuO₂ electrodes with various levels of cobalt. The electrodes with 1.00 mol% cobalt exhibited the best electrochemical properties, including a specific capacitance value of 1072 F g⁻¹ and a stability of 94.04% after 1000 charge–discharge cycles. These findings indicate that doping RuO₂ with cobalt improves the electrochemical performance by increasing the active surface area.

2. Experimental

2.1. Materials

AR-grade cobalt chloride hexahydrate (CoCl₂.6H₂O) and ruthenium (III) chloride trihydrate (RuCl₃•3H₂O) were used as precursors to spraydeposit cobalt-doped RuO₂ electrodes with different cobalt contents. The cobalt content in the precursor solution (CoCl₂.6H₂O) was varied to obtain 0.25 mol%, 0.50 mol%, 0.75 mol%, 1.00 mol%, 1.25 mol%, 1.50 mol%, 1.75 mol% and 2.00 mol% cobalt-doped RuO₂ electrodes, this was considered as stock solution. Ten ml of this stock solution was mixed with 10 ml of ethanol to make final spraying solution 20 ml. The optimized values of the preparative parameters were the following: substrate temperature, 290°C; precursor solution concentration, 50 mM; spray rate, 3–4 ml min⁻¹; nozzle-to-substrate distance, 28 cm; carrier gas (air) pressure, 176 kPa.

2.2. Characterization methods

The crystal structure of the cobalt-doped RuO₂ electrodes was studied using Cu-K α radiation ($\lambda = 1.5406$ Å) from an X-ray diffractometer (Ultima IV). The 2θ values obtained were in the range $10-80^{\circ}$ (step size 0.02°). A Field emission scanning electron microscopy (FESEM) (S-4800) was used to carry out morphological analyses of the electrodes. The absorption spectra of the cobalt-doped RuO₂ electrodes were plotted to determine the optical bandgap using a UV-visible spectrophotometer (Ocean Optics JAZ-3 and NIR-QUEST). Electrical resistivity measurements of the cobalt-doped RuO₂ electrodes were made using the fourpoint probe measurement technique (Vander paw configuration) at constant current (Source Measurement Unit-Keithley 2450 SMU). Electrochemical measurements including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) were made using an electrochemical analyzer (CHI 608D). A typical three-electrode cell arrangement was used, with a 1 cm² cobalt doped RuO₂ film as the working electrode and saturated Ag/ AgCl and platinum as the reference and counter electrodes in a 0.5 M H₂SO₄ electrolyte. The electrochemical impedance was measured at open circuit potential in a frequency range of 100 kHz to 1 Hz, with an AC amplitude of 5 mV.

3. Results and discussion

3.1. Specific capacitance

Fig. 1 shows the variation of specific capacitance (at 10 mV s^{-1}) with cobalt doping. It can be observed that the specific capacitance of the

Fig. 1. Variation of specific capacitance (at 10 $\rm mVs^{-1})$ with cobalt doping in RuO2.

electrodes rises with the doping level from a value of 813 F g⁻¹ for undoped rutile RuO₂. It reaches a maximum value (992 F g⁻¹) at 1.00 mol% cobalt doping. It decreases when the cobalt doping is increased above 1.00 mol%, with the value at 2.00 mol% being 938 F g⁻¹. The variation in the specific capacitance is related to the changes in electrical resistivity of the cobalt-doped RuO₂ electrodes. The maximum specific capacitance obtained with 1.00 mol% cobalt doping in RuO₂ electrodes may be due to optimal doping of cobalt at 1.00 mol% than other doping contents in RuO₂.

3.2. X-ray diffraction (XRD)

The lattice structure and related factors of the cobalt-doped RuO2 electrodes were studied using XRD. As can be seen in Fig. 2, the XRD patterns of the electrodes show a polycrystalline crystal structure irrespective of the cobalt content. The major diffraction peaks of the undoped and cobalt-doped RuO2 electrodes are present at around 28.06°, 35.09°, 40.10°, 54.33° and 65.65°, corresponding to the (110), (101), (200), (211) and (310) planes of rutile RuO₂ (JCPDS card no. 88-0322). It can be seen from Table 1 that both the undoped and cobaltdoped RuO₂ exhibit a rutile tetragonal crystal structure with the space group P42 [24]. This is supported by an agreement between the observed spacing and the standard interplanar spacing of the (hkl) planes. The (110) peak intensity increases with increasing cobalt doping content up to 1.00 mol% and decreases thereafter. This is because the alignment of fine grains along the (110) direction grows stronger up to 1.00 mol%, resulting in an enhancement of the peak intensity. The decrease in peak intensity above 1.00 mol% might be due to fluctuations in the electron density or due to the presence of point defects [25].

The XRD patterns do not show any diffraction peaks corresponding

Fig. 2. XRD patterns of Rutile and cobalt-doped RuO₂ electrodes.

Table 1

Structural data for cobalt doped RuO_2 spray deposited with various cobalt-doping contents.

0-1-1-1-1-1-1	00 (0)	1 (Å)	1 (Å)	1.1.1	- (Å)	- (Å)	D
Cobait doping	20(1)	(Cal)	(Ct.4)	IIKI	a (A)	C (A)	D (mm)
		(Cal.)	(Sta.)				(IIII)
%)							
Undoped	27.98	3.186	3.177	110	4.500	3.175	13
	34.54	2.594	2.555	101			
	40.08	2.248	2.247	200			
	54.24	1.690	1.687	211			
	65.96	1.415	1.421	310			
0.25	27.89	3.196	3.177	110	4.511	3.181	12
	34.47	2.599	2.555	101			
	40.02	2.251	2.247	200			
	53.92	1.699	1.687	211			
	66.03	1.414	1.421	310			
0.50	27.76	3.211	3.177	110	4.514	3.188	11
	34.41	2.604	2.555	101			
	40.15	2.244	2.247	200			
	53.87	1.700	1.687	211			
	65.98	1.415	1.421	310			
1.00	27.72	3.215	3.177	110	4.519	3.190	10
	34.38	2.606	2.555	101			
	40.11	2.246	2.247	200			
	54.21	1.690	1.687	211			
	66.02	1.414	1.421	310			
1.50	27.70	3.217	3.177	110	4.522	3.189	9
	34.38	2.606	2.555	101			
	40.10	2.247	2.247	200			
	53.83	1.701	1.687	211			
	65.98	1.415	1.421	310			
2.00	27.68	3.220	3.177	110	4.573	3.176	9
	34.35	2.608	2.555	101			
	39.20	2.296	2.247	200			
	53.73	1.704	1.687	211			
	65.98	1.415	1.421	310			

20; Bragg's angle, d; interplanar spacing, hkl; Miller indices, 'a' and 'c'; lattice constants, D; crystallite size.

to CoO, Co₂O₃ or Co₃O₄ confirming that cobalt atoms are substituted in RuO₂ lattice. Interestingly, the shifting of (110) peak belonging to RuO₂ towards the lower 2 θ side with increasing cobalt doping content indicates that cobalt atoms have been effectively substituted in the RuO₂ lattice. The difference in the ionic radii of the cobalt and ruthenium ions causes the crystalline RuO₂ lattice to swell, resulting in the shifting of the XRD peaks to the lower 2 θ side after doping, and this is compatible with Bragg's equation [25]. The changes in the position of the (110) peak with changes in cobalt doping are related to changes in the microstructure of the RuO₂ electrodes, which affect the supercapacitive behaviour, as will be seen in subsequent sections (electrochemical studies) [15]. Similar observations related to the structure of cobalt-doped RuO₂ were reported by Petrykin et al. [20].

The crystallite sizes of the cobalt-doped RuO₂ electrodes corresponding to the (110) plane were determined using the Debye-Scherrer equation [26]. The crystallite size decreases as the cobalt content increases, and it is estimated to be in the range 13–9 nm. The decrease in crystallite size is due to replacement of Ru³⁺ ions (ionic radius 0.82 Å) with Co²⁺ (ionic radius 0.885 Å). The alteration/increase in ionic radius produces lattice distortions, increasing the FWHM and decreasing the crystallite size [27]. Abbott and colleagues [28] have reported similar results for Mg-doped RuO₂.

3.3. FESEM

Fig. 3 (a)-(e) shows the FESEM images (magnification $200,000 \times$) of cobalt-doped RuO₂ electrodes with different cobalt content. The undoped RuO₂ electrode shows a porous morphology, with larger particles formed by controlled agglomeration of smaller particles (Fig. 3 (a)). There is a smooth and homogeneous surface with compact grains in the electrode with 0.25 mol% cobalt (Fig. 3 (b)). The porosity and

homogeneity of the RuO₂ electrodes increase with increasing cobaltdoping content in the RuO₂ (Fig. 3 (c)-(e)). The porous structure promotes the contact between the electrolyte ions and the RuO₂ working electrode. The FESEM images in Fig. 3 (a)–(e) shows that the cobalt doping obviously changes the microstructure of the RuO₂ electrodes, improving their supercapacitive behaviour. A similar porous morphology has been reported by Yang and colleagues [29] for RuO₂/RGOH prepared using the hydrothermal method and by Lenar and coworkers [30] for RuO₂ nanoparticles.

3.4. Optical

Optical absorption spectra were recorded in the wavelength range 350-1050 nm to compare the bandgaps of RuO₂ electrodes with different cobalt-doping content. The electrodes had a high coefficient of absorption, $10^4\,cm^{-1}.$ A Tauc plot, a graph with $(\alpha h\nu)^2$ plotted against $h\nu$ (Fig. 4 (a)), was utilised to estimate the optical bandgap of the undoped and cobalt-doped electrodes [31]. The estimated bandgap values of RuO₂ electrodes with different cobalt-doping levels are provided in Table 2. Fig. 4 (b) shows the variation of the bandgap with cobalt-doping content. The optical bandgap of a spray-deposited undoped RuO₂ electrode was 1.80 eV. With 0.25 mol%. 0.50 mol%. 1.00 mol%. 1.50 mol% and 2.00 mol% cobalt doping, the optical bandgap became 1.77 eV, 1.75 eV, 1.73 eV, 1.71 eV and 1.7 eV, respectively. The reduction in bandgap with increasing cobalt-doping level is due to the band tailing effect and an increase in acceptor density [32]. The decrease in bandgap with increasing cobalt-doping level confirms that cobalt ions are continuously substituted in the RuO₂ lattice. Also, the localized defects created in the RuO₂ by oxygen vacancies due to the cobalt doping significantly decrease the bandgap [33]. The bandgap values estimated in this work are in agreement with results reported in the literature for RuO₂ [34-36].

3.5. Electrical

The four-probe technique was used to evaluate the contact resistances for spray-deposited cobalt-doped RuO2 and the results are shown in Fig. 5(a). The lowest electrical resistance is witnessed for 1.00 mol% cobalt-doped RuO2 electrode. The variation of electrical resistivities with inverse of absolute temperature (1000/T) for spraydeposited RuO₂ electrodes with different cobalt-doping levels is shown in Fig. 5 (b) [37]. Table 2 shows that the electrical resistivity decreased considerably from a value of $5.76 \times 10^2 \Omega$ cm for undoped RuO₂ to 1.91 $\times 10^2 \Omega$ cm for a 1.00 mol% cobalt-doped RuO₂ electrode. For a given temperature, the electrical resistivity decreases with increasing cobalt-doping level up to 1.00 mol%. This is because of substitution of ruthenium(III) by cobalt(II), which is also evident from the XRD data. Cobalt has only two electrons that form a covalent bond with oxygen. There is a deficiency of one electron, which reduces the electrical resistivity. Above a cobalt-doping level of 1.00 mol%, the electrical resistivity increases $(2.70 \times 10^2 \,\Omega \text{ cm}$ at a cobalt-doping level of 2.00 mol %). Such behaviour points to a change in electrical conduction in RuO₂ from n-type to p-type [38] with increasing cobalt doping.

The logarithmic dependency of electrical resistivity on inverse of temperature provides activation energy (Ea) [39]. The activation energies are 0.037–0.047 eV and 0.041–0.054 eV (Table 2) in the low-temperature and high-temperature regions, respectively. The activation energies are different for different cobalt-doping levels, confirming that the cobalt-doped electrodes each have different levels of oxygen vacancies [38]. These activation energies are lower than the value of 0.45–0.48 eV reported by Ugur and coworkers [40].

3.6. Electrochemical

In the light of the foregoing results, the cobalt-doped RuO_2 electrodes were subjected to electrochemical tests such as CV, GCD and EIS in a 0.5

Fig. 3. FESEM images (magnification 200,000 \times) of cobalt doped RuO₂ films with various cobalt-doping contents (a) undoped (Rutile) (b) 0.25 mol%, (c) 0.50 mol% (d) 1.00 mol%, and (e) 1.50 mol%, respectively.

M H₂SO₄ electrolyte with a three-electrode setup.

3.6.1. CV

CV is an effective measurement to determine the capacitive behaviour of materials. Fig. 6 shows the effect of the scan rate on CV curves between 0 V and 1.0 V in a 0.5 M H₂SO₄ electrolyte. Overall, the current density is enhanced with rise in scan rate used to perform CV analysis. The good current responses and nearly symmetric CV curves in the cathodic and anodic paths indicate that the electrodes display robust supercapacitive behaviour. It can be seen from Fig. 6 that the area under the CV curve of the 1.00 mol% cobalt-doped RuO₂ electrode (Fig. 6 (d)) is greater than the areas under the curves of undoped and 0.25 mol%, 0.50 mol%, 1.50 mol%, and 2.00 mol% cobalt-doped RuO2 electrodes (Fig. 6 (a-c) (e-f)). This suggests that the 1.00 mol% cobalt-doped RuO₂ electrode can store more charge and that its electrochemical performance is superior. The greater area under the CV curve is due to the porous surface morphology, seen under FESEM (Fig. 3), and the strong electrical conductivity (Fig. 5; Table 2), which increases the diffusion of the ions of H_2SO_4 . Fig. 7 (a) shows the CVs recorded at 10 mV s⁻¹ for undoped and cobalt-doped RuO2 electrodes. The specific capacitances of RuO₂ electrodes were determined from the CV curves using a relation given elsewhere [41] (Table 3). Fig. 7 (b) shows the variation of specific capacitance with scan rate. The 1.00 mol% cobalt-doped RuO₂ electrode displayed the highest specific capacitance (1072 F g^{-1} at a 5 mV s⁻¹ scan rate), followed by the 1.50 mol% cobalt-doped RuO₂ electrode (1045 F g^{-1} at a 5 mV s⁻¹ scan rate). These values are much higher than that of the undoped RuO₂ electrode (893 F g^{-1} at a 5 mV s⁻¹ scan rate). There is a specific capacitance with cobalt-doping level is due to a decreased crystallite size (Table 1) and improved electrical conductivity (Table 2), as a result of which there are more active sites for energy storage [42]. The reduction in specific capacitance with an increase in cobalt-doping level beyond 1.00 mol% is due to decreased electrical conductivity of cobalt-doped RuO₂ electrode (Table 2) and a decreasing path for diffusion of electrolyte ions. This shows that cobalt doping considerably raises the specific capacitance of RuO₂.

3.6.2. GCD

Fig. 8 (a-f) shows the charge–discharge curves of the electrodes at current densities of 0.5 A g⁻¹, 1.0 A g⁻¹, 2.0 A g⁻¹, and 4.0 A g⁻¹ in the potential window from 0 V to 0.85 V in 0.5 M H₂SO₄. It can be seen from the curves that the discharge time decreases with increasing charge–discharge current density, following this equation [43]:

Fig. 4. (a) Plot of $(\alpha h\nu)^2$ versus $h\nu$ and (b) Variation of bandgap energy with cobalt doping content for spray deposited cobalt doped RuO₂.

Table 2

Optical and electrical properties of cobalt doped ${\rm RuO}_2$ spray deposited with various cobalt-doping contents.

Cobalt doping	Band gap	Electrical resisti	Activati energy (on (eV)	
content (mol%)	(eV)	310K (\times 10 ²)	500K (\times 10 ²)	LT	HT
Undoped	1.80	5.76	1.05	0.045	0.051
0.25	1.77	4.61	0.84	0.047	0.054
0.50	1.75	3.43	0.71	0.043	0.041
1.00	1.73	1.91	0.44	0.039	0.041
1.50	1.71	2.35	0.52	0.040	0.045
2.00	1.70	2.70	0.59	0.037	0.045

LT- Low temperature; HT- High temperature.

$$C = \frac{I \times \Delta t}{m \times \Delta V} \tag{1}$$

I is the charge–discharge current at discharge time t (seconds), ΔV is the potential window, and m is the mass of the RuO₂ deposited. Table 4 shows the specific capacitances calculated using Eq. (1) for cobalt-doped RuO₂.

The undoped RuO₂ electrode has a specific capacitance of 964 F g⁻¹ at 0.5 A g⁻¹. The specific capacitance increases as the cobalt-doping level of the RuO₂ electrodes increases and becomes highest (1158 F g⁻¹ at 0.5 A g⁻¹) with a doping level of 1.00 mol%. This behaviour can be due to the fact that the 1.00 mol% cobalt-doped RuO₂ electrode provides more active sites, increasing the ionic conductivity and diffusion of electrolyte ions in the RuO₂ electrode [44]. Another reason is that the optimum doping of cobalt at 1.00 mol% improves the electronic structure of the RuO₂ electrode, enhancing the electrical conductivity. The specific capacitance decreases when the doping level increases

Fig. 5. (a) Temperature dependent contact resistances and (b) Variation of log ρ vs 1000/T for spray deposited cobalt doped RuO₂ measured by the four-point probe technique.

further, becoming 1099 F g^{-1} at 0.5 A g^{-1} (2.00 mol% cobalt-doped RuO₂). These values of the specific capacitance are close to or higher than those reported in the literature for RuO₂ [17,18,20–23,45,46].

Fig. 9 (a) shows the GCD curves of the cobalt-doped RuO₂ electrodes at a current density of 1 A g⁻¹. The linear shape of the charge–discharge curve points to the excellent capacitive properties cobalt-doped RuO₂ electrodes. Considering the charging and discharging times, the cobalt-doped RuO₂ electrodes appear to have excellent coulombic efficiency. Fig. 9 (b) shows a plot of specific capacitance versus current density for cobalt-doped RuO₂ electrodes. The specific capacitance of the 1.00 mol % cobalt-doped RuO₂ electrode reduces from 1158 F g⁻¹ at 0.5 A g⁻¹ to 957 F g⁻¹ at 4.0 Ag⁻¹. Because of the solid electrolyte interface, the specific capacitance is retained to an extent of 82.64%, with only a 17.36% loss.

The specific energy is plotted against the specific power to assess the suitability of cobalt-doped RuO₂ electrodes for use in energy storage devices (Ragone plot, Fig. 10(a)). The specific power and specific energy of the 1.00 mol% cobalt-doped RuO₂ electrode are 1.702 kW kg⁻¹ and 96.02 W h kg⁻¹, respectively. These values are better than the values of 151 W kg⁻¹ and 3.57 W h kg⁻¹ reported by Patil and co-workers [47] for hydrous RuO₂.

GCD tests (1000 charge–discharge cycles) were performed at a current density of 4.0 A g⁻¹. The cycle stability of the 1.00 mol% cobaltdoped RuO₂ electrode is shown in Fig. 10(b). 94.04% of the initial capacitance of the RuO₂ electrode cobalt-doped at a level of 1.00 mol% is sustained, exhibiting superior stability. The inset of Fig. 10(b) shows the GCD curves of the first five cycles. Loss of the active material of the cobalt-doped RuO₂ electrode through dissolution or detachment is what causes the specific capacitance to decrease with the number of cycles [48].

Fig. 6. The CVs at various scan rates for cobalt doped RuO₂ electrodes spray deposited with various cobalt doping contents (a) undoped (Rutile) (b) 0.25 mol%, (c) 0.50 mol% (d) 1.00 mol%, (e) 1.50 mol%, and (f) 2.00 mol%, respectively.

Fig. 7. (a) CVs (scan rate 10 mVs⁻¹) for cobalt doped RuO₂ electrodes spray deposited with various cobalt doping contents, and (b) Plot of specific capacitance versus scan rate for cobalt doped RuO₂ electrodes spray deposited with various cobalt doping contents.

Table 3

Specific	capacita	nce at	different	scan	rates	from	CV	for	RuO_2	electrodes	s spray
deposite	ed with v	arious	cobalt-do	ping	conte	nts.					

Cobalt doping content (mol	undoped	0.25	0.50	1.00	1.50	2.00
%) → Scan rate (mVs ⁻¹)↓	Sp	ecific ca	pacitanc	e from C	/ (Fg ⁻¹)	
5	893	930	990	1072	1045	1018
10	813	856	910	992	965	938
20	749	792	850	928	901	874
50	707	750	815	886	859	832
100	668	715	775	847	820	795

3.6.3. EIS

The EIS results (Fig. 11 (a)) were analysed to study the electrochemical kinetics of the cobalt-doped RuO₂ electrodes. All of the cobaltdoped RuO₂ electrodes' Nyquist plots show a depressed semicircle, which denotes a charge-transfer mechanism. The EIS data can be fitted by an equivalent circuit shown in Fig. 11 (b) [41]. The elements in the equivalent circuit are solution resistance (Rs), the charge-transfer resistance (Rct), the double-layer capacitance element (Cpseudo). The semicircle of the 1.00 mol% cobalt-doped RuO₂ electrode has a smaller radius compared with those of the other electrodes (0.25 mol%, 0.50 mol%, 1.50 mol%, and 2.00 mol%), which indicates that the solution resistance (0.27 Ω) and charge transfer resistance (8.15 Ω cm²) are the lowest values. This in turn implies a fast charge-transfer rate at the RuO₂ electrode/H₂SO₄ electrolyte interface.

Table 5 presents the Nyquist data of the undoped and cobalt-doped RuO₂ electrodes. In the low-frequency region, the slope of the Nyquist plot shows the diffusion capacity of the H_2SO_4 electrolyte into the undoped and cobalt-doped RuO₂ electrodes. It is clear that the ion diffusion rate of the 1.00 mol% cobalt-doped RuO₂ electrode is greater than those of the undoped electrode and other (0.25 mol%, 0.50 mol%, 1.50 mol%, and 2.00 mol%) cobalt-doped RuO₂ electrodes implying good electrical conductivity [49].

Fig. 8. The GCD curves at various current densities for cobalt doped RuO₂ electrodes spray deposited with various cobalt doping contents (a) undoped (Rutile) (b) 0.25 mol%, (c) 0.50 mol% (d) 1.00 mol%, (e) 1.50 mol%, and (f) 2.00 mol%, respectively.

Table 4

Specific capacitances from GCD for ${\rm RuO}_2$ electrodes spray deposited with various cobalt-doping contents.

Cobalt doping content $(mol\%) \rightarrow$	Undoped	0.25	0.50	1.00	1.50	2.00
Current density $(Ag^{-1}) \downarrow$	Sp	ecific cap	acitance	from GCI	$D (Fg^{-1})$	
0.5	964	1004	1069	1158	1129	1099
1	878	924	983	1071	1042	1013
2	809	855	918	1002	973	944
4	764	810	880	957	928	899

4. Conclusion

Cobalt-doped RuO₂ electrodes were spray deposited with varying cobalt content in the precursor solution. The undoped and cobalt-doped RuO₂ exhibited a rutile tetragonal crystal structure with the P42 space group. The crystallite size was estimated to be 13-9 nm, depending on the cobalt-doping content in the RuO2. The porous structure and homogeneity of the RuO₂ increased with increasing cobalt-doping content. FESEM images showed a granular and tightly packed morphology without aggregation of grains. The optical bandgap of the spraydeposited undoped RuO₂ electrode was 1.80 eV, and when the cobaltdoping content was increased, the optical bandgap decreased to 1.7 eV. Electrochemical supercapacitive measurements showed that 1.00 mol% cobalt-doped RuO₂ has an exceptionally high specific capacitance of 1072 F g^{-1} at a 5 mV s^{-1} scan rate; in comparison, the corresponding value of an undoped RuO_2 electrode was 893 F g⁻¹ at the same scan rate. The increase in specific capacitance is attributed to a more porous morphology and an increased electrical conductivity. This study demonstrates that elemental doping is an efficient way to enhance the electrochemical supercapacitive performance of RuO2 and that elemental doping can be achieved using chemical spray pyrolysis.

CRediT author statement

All authors contributed to the study conception and design. All

Fig. 9. (a) GCD curves at current density of $1Ag^{-1}$ and (b) plot of specific capacitance versus current density for cobalt doped RuO_2 electrodes spray deposited with various cobalt-doping contents in precursor solution.

Fig. 10. (a) Ragone plot of spray deposited RuO_2 electrode doped with 1.00 mol% cobalt contents, (b) Long term cycling performance at the current density of $4Ag^{-1}$ for spray deposited RuO_2 electrode with 1.00 mol% cobalt doping contents. The inset shows the charge-discharge curves of the first 5 cycles.

Fig. 11. Nyquist plot for RuO_2 electrodes spray deposited with various cobaltdoping contents. The inset is the enlarged Nyquist plots in high frequency region and (b) equivalent circuit diagram proposed for analysis of the EIS data.

authors performed material preparation, data collection and analysis. The first draft of the manuscript was written by Chandrashekhar R., and Dr Abhijit Yadav commented on previous versions of the manuscript. All authors read and approved the final manuscript. Table 5

Nyquist data for RuO_2 electrodes spray deposited with various cobalt-doping contents.

Cobalt doping content (mol%)	Rs (Ω)	Rct (Ωcm^2)
undoped	0.32	11.38
0.25	0.30	09.58
0.50	0.29	09.03
1.00	0.27	08.15
1.50	0.31	11.25
2.00	0.34	12.62

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

- H. Gonenc, B. Scholtens, Environmental and financial performance of fossil fuel firms: a closer inspection of their interaction, Ecol. Econ. 132 (2017) 307–328.
- [2] Rafael J. Silva, Vanessa Klobukoski, Jessica I.S. de Paula, Izabel C. Riegel-Vidotti, Marcio Vidotti, Assembly of symmetric supercapacitor based on alginate hydrogel electrolyte and polyaniline modified electrodes, Electrochim. Acta 429 (2022), 140914.
- [3] Jun Zhang, Rui Huang, Zhenbiao Dong, Hualin Lin, Sheng Han, An illuminationassisted supercapacitor of rice-like CuO nanosheet coated flexible carbon fiber, Electrochim. Acta (2022), 140789.
- [4] Shuai Liu, Li Wei, Huai Wang, Review on reliability of supercapacitors in energy storage applications, Appl. Energy 278 (2020), 115436.
- [5] Aneeya Samantara, Daisuke Tashima, Supercapacitors for the Next Generation, IntechOpen Publishers, 2022.
- [6] T. Schoetz, L.W. Gordon, S. Ivanov, A. Bund, D. Mandler, R.J. Messinger, Disentangling faradaic, pseudocapacitive, and capacitive charge storage: a tutorial for the characterization of batteries, supercapacitors, and hybrid systems, Electrochim. Acta 412 (2022), 140072.
- [7] Zuozhao Zhai, Lihui Zhang, Tianmin Du, Bin Ren, Yuelong Xu, Shasha Wang, Junfeng Miao, Zhenfa Liu, A review of carbon materials for supercapacitors, Mater. Des. 221 (2022), 111017.
- [8] Cuiqin Fang, Dong Zhang, High multifunctional performance structural supercapacitor with Polyethylene oxide cement electrolyte and reduced graphene oxide@CuCo₂O₄ nanowires, Electrochim. Acta 401 (2022), 139491.
- [9] Navajsharif S. Shaikh, Shivaji B. Ubale, Vikas J. Mane, Jasmin,S. Shaikh, Vaibhav. C. Lokhande, Supareak Praserthdam, Chandrakant D. Lokhande, Pongsakorn Kanjanaboos, Novel electrodes for supercapacitor: conducting polymers, metal oxides, chalcogenides, carbides, Mixenes, and their composites with graphene, J. Alloys Compd. 893 (2022), 161998.
- [10] José G. Ruiz-Montoya, Lady V. Quispe-Garrido, J.C. Calderón Gómez, Angélica M. Baena-Moncada, Josué M. Gonçalves, Recent progress in and prospects for supercapacitor materials based on metal oxide or hydroxide/biomass-derived carbon composites, Sustain. Energy Fuels 5 (2021) 5332–5365.
- [11] C.D. Lokhande, D.P. Dubal, Oh-Shim Joo, Metal oxide thin film based supercapacitors, Curr. Appl. Phys. 11 (2011) 255–270.
- [12] P. Simon, Y. Gagotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854.
- [13] Saira Ishaq, Mahmoud Moussa, Farah Kanwal, Raheel Ayub, Truc NgoVan, Umar Azhar, Dusan Losic, One step strategy for reduced graphene oxide/cobaltiron oxide/polypyrrole nanocomposite preparation for high performance supercapacitor electrodes, Electrochim. Acta 427 (2022), 140883.
- [14] Murat Ates, Carlos Fernandez, Ruthenium oxide–carbon-based nanofillerreinforced conducting polymer nanocomposites and their supercapacitor applications, Polym. Bull. 76 (2019) 2601–2619.
- [15] Dongfang Yang, Pulsed laser deposition of cobalt-doped manganese oxide thin films for supercapacitor applications, J. Power Sources 198 (2012) 416–422.
- [16] Mariam Hasan, Sidra Zawar, Ghulam M. Mustafa, Abdul Ghaffar, Aamir Razaq, Shahid Atiq, Porous Architecture of Ni substituted ZnMn₂O₄ nanospheres as an electrode material for supercapacitor applications, Phys. B 633 (2022), 413767.
- [17] Koshal Kishor, Sulay Saha, Alhad Parashtekar, Raj Ganesh S Pala, Increasing Chlorine Selectivity through Weakening of Oxygen Adsorbates at Surface in Cu Doped RuO₂ during Seawater Electrolysis, J. Electrochem. Soc. 165 (2018) J3276–J3280.
- [18] P.S. Joshi, D.S. Sutrave, Mn doped ruthenium oxide permeable structures and their electrochemical properties, Elixir Mater. Sci. 105 (2017) 46136–46140, 46136.

- [19] Katerina Minhová Macounová, Nina Simic, Elisabet Ahlberg, Petr Krtil, Hypochlorite oxidation on RuO₂-based electrodes: a combined electrochemical and *in situ* mass spectroscopic study, Electrocatalysis 10 (2019) 45–55.
- [20] Valery Petrykin, Katerina Macounová, Maki Okube, Sanjeev Mukerjee, Petr Krtil, Local structure of Co doped RuO₂ nanocrystalline electrocatalytic materials for chlorine and oxygen evolution, Catal. Today 202 (2013) 63–69.
- [21] Jianwei Su, Ruixiang Ge, Kemin Jiang, Yan Dong, Fei Hao, Ziqi Tian, Guoxin Chen, Liang Chen, Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media, Adv. Mater. (2018), 1801351.
- [22] Yiyi Wu, Muhammad Tariq, Waqas Qamar Zaman, Wei Sun, Zhenhua Zhou, Ji Yang, Bimetallic doped RuO₂ with manganese and iron as electrocatalysts for favorable oxygen evolution reaction performance, ACS Omega 5 (2020) 7342–7347.
- [23] Thomas I. Valdez, Keith J. Billings, Jeff Sakamoto, Florian Mansfeld, S. R. Narayanan, Iridium and lead doped ruthenium oxide catalysts for oxygen evolution, ECS Trans. 25 (1) (2009) 1371–1382.
- [24] JCPDS card no. 88-0322.
- [25] J.S. Revathy, N.S. Chitra Priya, K. Sandhya, Deepthi N. Rajendran, Structural and optical studies of cerium doped gadolinium oxide phosphor, Bull. Mater. Sci. 44 (2021) 13.
- [26] A.A. Yadav, M.A. Barote, T.V. Chavan, E.U. Masumdar, Influence of indium doping on the properties of spray deposited CdS_{0.2}Se_{0.8} thin films, J. Alloys Compd. 509 (2011) 91–921.
- [27] A.P. Jadhav, J.H. Oh, S.W. Park, H. Choi, B.K. Moon, B.C. Choi, K. Jang, J. H. Jeong, S.S. Yi, J.H. Kim, Enhanced down and upconversion emission for Li⁺ codoped Gd₂O₃:Er³⁺ nanostructures, Curr. Appl. Phys. 16 (2016) 1374–1381.
- [28] Daniel F. Abbott, Valery Petrykin, Maki Okube, Zdenk Bastl, Sanjeev Mukerjee, Petr Krtil, Selective chlorine evolution catalysts based on Mg-doped nanoparticulate ruthenium dioxide, J. Electrochem. Soc. 162 (1) (2015) H23–H31.
- [29] Yuying Yang, Yarong Liang, Yadi Zhang, Ziyu Zhang, Zhiming Li, Zhongai Hu, Three-dimensional graphene hydrogel supported ultrafine RuO₂ nanoparticles for supercapacitor electrodes, New J. Chem. 39 (2015) 4035–4040.
- [30] Nikola Lenar, Beata Paczosa-Bator, Robert Piech, Ruthenium dioxide nanoparticles as a high-capacity transducer in solid-contact polymer membrane-based pHselective electrodes. Microchim. Acta 186 (2019) 777.
- [31] A.A. Yadav, M.A. Barote, E.U. Masumdar, Studies on cadmium selenide (CdSe) thin films deposited by spray pyrolysis, Mater. Chem. Phys. 121 (2010) 53–57.
- [32] Silan Baturay, Ahmet Tombak, Derya Kaya, Yusuf Selim Ocak, Murat Tokus, Murat Aydemir, Tahsin Kilicoglu, Modification of electrical and optical properties of CuO thin films by Ni doping, J. Sol-Gel Sci. Technol. 78 (2016) 422–429.
- [33] Antonino Gulino, Giuseppe Compagnini, A.A. Scalisi, Large third-order nonlinear optical properties of cadmium oxide thin films, Chem. Mater. 15 (2003) 3332–3336.
- [34] A. Belkind, Z. Orban, J.L. Vossen, J.A. Woollam, Optical properties of RuO₂ films deposited by reactive sputtering, Thin Solid Films 207 (1992) 242–247.

- [35] Farid El-Tantawy, Ahmed A. Al-Ghamdi, Attieh A. Al-Ghamdi, Yusuf A. Al-Turki, Ahmed Alshahrie, Faten Al-Hazmi, Omar A. Al-Hartomy, Optical properties of nanostructured ruthenium dioxide thin films via sol-gel approach, J. Mater. Sci. Mater. Electron. 28 (2017) 52–59.
- [36] V.D. Patake, C.D. Lokhande, Chemical synthesis of nano-porous ruthenium oxide (RuO₂) thin films for supercapacitor application, Appl. Surf. Sci. 254 (2008) 2820–2824.
- [37] A.A. Yadav, Physical and electrochemical properties of spray deposited Co₃O₄ thin films, Phase Transit 94 (10) (2021) 691–704.
- [38] A R Bally, E N Korobeinikova, P E Schmid, F Levy, F Bussy, Structural and electrical properties of Fe-doped TiO₂ thin films, J. Phys. D: Appl. Phys. 31 (1998) 1149–1154.
- [39] Nandkishor Manoharrao Patil, Santosh G. Nilange, Vidyadevi A. Jundale, Pratibha B. Kadam, R. Chandrashekhar, Abhijit A. Yadav, Structural, optical and electrical properties of spray-deposited Fe-doped nanocrystalline ZnS_{0.2}Se_{0.8} thin films, Phase Transit 94 (2021) 493–510.
- [40] D. Ugur, A.J. Storm, R. Verberk, J.C. Brouwer, W.G. Sloof, Kinetics of Reduction of a RuO₂(110) Film on Ru(0001) by H₂, J. Phys. Chem. C 116 (2012) 26822–26828.
- [41] A.A. Yadav, S.N. Jadhav, D.M. Chougule, P.D. Patil, U.J. Chavan, Y.D. Kolekar, Spray deposited Hausmannite Mn₃O₄ thin films using aqueous/organic solvent mixture for supercapacitor applications, Electrochim. Acta 206 (2016) 134–142.
- [42] Zhongxing Wang, Jiliang Zhu, Ping Sun, Pengyu Zhang, Zifan Zeng, Shuang Liang, Xiaohong Zhu, Nanostructured Mn–Cu binary oxides for supercapacitor, J. Alloys Compd. 598 (2014) 166–170.
- [43] A.A. Yadav, U.J. Chavan, Electrochemical supercapacitive performance of spray deposited NiSnO₃ thin films, Thin Solid Films 634 (2017) 33–39.
- [44] Shanshan Xiong, Shuting Wenga, Yu Tang, Lei Qian, Yanqiu Xu, Xianfa Li, Hongjun Lin, Yanchao Xu, Yang Jiao, Jianrong Chen, Mo-doped Co₃O₄ ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting, J. Colloid Interface Sci. 602 (2021) 355–366.
- [45] Sujoy Sarkar, Debdyuti Mukherjee, R. Harini, G. Nagaraju, Ionic liquid-assisted synthesis of tri-functional ruthenium oxide nanoplatelets for electrochemical energy applications, J. Mater. Sci. 57 (2022) 7680–7693.
- [46] Sujit Kumar Mondal, N. Munichandraiah, Anodic deposition of porous RuO₂ on stainless steel for supercapacitor studies at high current densities, J. Power Sources 175 (2008) 657–663.
- [47] U.M. Patil, S.B. Kulkarni, V.S. Jamadade, C.D. Lokhande, Chemically synthesized hydrous RuO₂ thin films for supercapacitor application, J. Alloys Comp. 509 (2011) 1677–1682.
- [48] D.P. Dubal, A.D. Jagadale, S.V. Patil, C.D. Lokhande, Simple route for the synthesis of supercapacitive Co–Ni mixed hydroxide thin films, Mater. Res. Bull. 47 (2012) 1239–1245.
- [49] H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Growth of polypyrrole ultrathin films on MoS₂ monolayers as high-performance supercapacitor electrodes, Adv. Mater. 27 (6) (2015) 1117–1123.